
An Exponential Family Basis for Probabilistic Programming

Chad Scherrer
Galois Inc.

chad.scherrer@galois.com

1. Introduction
Many common distributional families take the form of exponential
families. The functional form of the conditional densities of these
families gives them convenient compositional properties, yielding
opportunities for powerful reasoning and optimization.

We present a Haskell-based approach for expressing proba-
bilistic models in terms of free arrows, over a basis of exponen-
tial families. Arrows are more restrictive than the more common
monadic approach, but this sacrifice in expressiveness is balanced
with broader opportunities for inference, for example in terms of
the dependency graph of random variables. Moreover, any monadic
inference method is easily applied to arrow-based models.

2. Exponential Families
An exponential family (Barndorff-Nielsen 1978) is a family of
distributions represented by a conditional density f(x|θ) satisfying

log f(x|θ) = η(θ) · t(x)− a(θ) + b(x)

for some functions η, t, a, and b.1 Note that the first term is a dot
product; η and t are both vector-valued.

Exponential families encompass a wide variety of distributional
families, including normal, Poisson, beta, gamma, multinomial,
and Dirichlet. Combining these arithmetically or hierarchically
(e.g., as a mixture distribution) increases this even further.

Exponential families have a number of convenient properties:

• t is a sufficient statistic, which is useful for simplifying infer-
ence problems.

• Exponential families are “closed under replication”; the joint
distribution of independent and identically distributed replicates
of a given exponential family, itself constitutes an exponential
family.

• The restriction of conditional distributions to members of ex-
ponential families leads to a striaghtforward implementation of
mean-field variational inference (Blei 2011).

To specify an exponential family requires specifying the func-
tional paramters η, t, a, and b above. For efficiency, we can
also specify a function for sampling a value. Using the popular
mwc-random package (O’Sullivan 2009), we arrive at

newtype Rand a = Rand (MWC.GenIO -> IO a)

data ExpFam θ x = ExpFam
(θ -> [Double ]) −−η
(x -> [Double ]) −− t
(θ -> Double) −−a
(x -> Double) −− b
(θ -> Rand x) −− sample

1 In common notation, all of these but η are upper-case; we have changed
this to be consistent with Haskell name requirements.

For example, the family of normal distributions with unknown
mean µ and standard deviation σ can be represented as
normal :: ExpFam (Double , Double) Double
normal = ExpFam η t a b sample

where
η (µ,σ) = [µ/sq σ, -0.5/sq σ]
t x = [x, sq x]
a (µ,σ) = 0.5 * sq (µ/σ) + log σ
b x = -0.5 * log (2*π)
sample (µ,σ) = MWC.normal µ σ

The functional form of exponential families leads to convenient
optimizations. For example, a vector of independent and identically
distributed (iid) replicates from an exponential family constitutes
another exponential family, which be be expressed via the follow-
ing combinator.
iid :: Int -> ExpFam θ x -> ExpFam θ [x]
iid k (ExpFam η t a b sample) = ExpFam

(\θ -> η θ)
(\xs -> map sum [t x | x <- xs])
(\θ -> k * a θ)
(\xs -> sum [b x | x <- xs])
(replicateM k . sample)

For models with iid observations, this allows inference to be
expressed in a natural way as a result of the sufficient statistic
intrinsic to exponential families, without the need for complex
computer algebra transformations.

3. Free Arrows
In functional programming languages, probabilistic programming
is often expressed in terms of a free monad. This allows complex
distributions and models to be built from a given set of compo-
nents, and allows evaluation to be deferred and customized to each
inference method of interest.

Though a free monad approach could conceivably be used in the
current approach, we find it more instructive to explore the design
space. We therefore carry the two-parameter kind of ExpFam forward
to models, and describe a design based on free arrows (Visscher
2012). Figure 1 defines free arrows and operations on them.

4. Models
In the current approach, a probabilistic Model is a free arrow over
the ModelF functor. Figure 2 gives details of the implementation.

The basis functor ModelF includes the ability to Sample, and also
to increment the LogWeight dependent on the parameter value. The
LogWeight constructor can be used to encode observed data or to
express distributions that cannot easily be sampled from. Note that
the “output” parameter of LogWeight has type unit; this encodes that
it is effectful, corresponding to scaling the distribution by some
function of its parameters.

Though a Model is expressed in terms of exponential families,
combining elements from these families allows for very flexible



type f :∼> g = forall a b. f a b -> g a b

newtype FreeA f a b = FreeA {
runFreeA :: forall arr. Arrow arr =>

(f :∼> arr) -> arr a b }

unit :: x :∼> FreeA x
unit a = FreeA $ \k -> k a

leftAdjunct :: (FreeA x :∼> y)->(x :∼> y)
leftAdjunct f = f . unit

rightAdjunct :: Arrow y => (x :∼> y)->(FreeA x :∼> y)
rightAdjunct f a = runFreeA a f

Figure 1. Operations on free arrows, adpated from Visscher (2012)

data ModelF θ x where
Sample :: ExpFam θ x -> ModelF θ x
LogWeight :: (θ -> Double) -> ModelF θ ()

type Model θ x = FreeA ModelF θ x

sample :: ExpFam θ x -> Model θ x
sample dist = unit $ Sample dist

observe :: x -> ExpFam θ x -> Model θ ()
observe x d = logWeight $ \θ -> logPdf d θ x

logWeight :: (θ -> Double) -> Model θ ()
logWeight f = unit $ LogWeight f

logPdf :: ExpFam θ x -> θ -> x -> Double
logPdf dist θ x = η θ · t x - a θ + b x

where
dist = ExpFam η t a b
xs · ys = sum $ zipWith (*) xs ys

Figure 2. Models, and some helpful combinators.

modeling. For example, Student’s T distribution cannot be ex-
pressed within a single exponential family, but it can be built using
and inverse Gamma and normal distributions. If

σ2 ∼ InverseGamma(ν/2, ν/2)

x ∼ N (0,
√
σ2) ,

then x ∼ StudentT(ν). Thus, using the proc syntax for arrows
(Paterson 2001), we can write

studentT :: Model Double Double
studentT = proc ν -> do

s2 <- sample inverseGamma -< (ν/2, ν/2)
sample normal -< (0, sqrt s2)

For a model with observed data, consider the simple example

µ ∼ N (0, 1)

x ∼ N (µ, 1) ,

where data x is observed, and we’d like to perform inference on µ.
We can express this as follows:

model :: Double -> Model () Double
model x = proc () -> do

µ <- sample normal -< (0,1)
observe x normal -< (µ,1)
returnA -< µ

Note that the observed data x cannot be part of the arrow in this
case, because an expression of the form proc x -> f x -< k would
desugar to arr (\x -> k) >>> f x, which is nonsense.

5. Inference
The rightAdjunct function specializes to

runModel :: Arrow a=> (ModelF :∼> a)->(Model :∼> a)

This makes it easy to map a Model into any arrow, through spec-
ification of the targets of the basis elements. Note that this pre-
serves transparency of the ExpFam constructor, so inference meth-
ods have access to the functional decomposition of the pdf as well
as the sampling function. In addition, mapping to a Kleisli arrow
like (θ -> Rand x) gives access to any inference method that can
be written monadically.

Beyond monadic inference, this arrow-based approach pre-
serves information about the dependency graph, leading to op-
portunties for graph-based methods like belief propagation.

6. Conclusion
We have introduced an approach for probabilistic programming
using free arrows over a basis comprised of exponential families
and log-density weighting.

Prior to this work, Toronto et al. (2015) described an approach
for using arrows to restrict the functional form of distributions,
yielding a way to reason about inverse images. This relied heav-
ily on inverse transform sampling, and hid the arrow-based logic,
rather than exposing it as the programming model.

This work is in its very early stages, but we see great potential
in the conciseness and composability of this approach. We are
hopeful that future explorations in this area will lead to further
improvements in expressive and composable models with access
to a wide variety of inference methods.

Acknowledgement
The author is grateful for discussions on this topic with Frank
Wood, Nathan Collins, and Rob Dockins. This research was sup-
ported by the DARPA PPAML program, contract number FA8750-
14-C-0003.

References
O. Barndorff-Nielsen. Information and Exponential Families in Statistical

Theory. John Wiley & Sons, 1978.
D. Blei. Variational Inference, 2011. URL

https://www.cs.princeton.edu/courses/archive/fall11/
cos597C/lectures/variational-inference-i.pdf.

B. O’Sullivan. mwc-random, 2009. URL
https://hackage.haskell.org/package/mwc-random.

R. Paterson. A new notation for arrows. ACM SIGPLAN Notices, 36(10):
229–240, 2001.

N. Toronto, J. McCarthy, and D. Van Horn. Running probabilistic programs
backwards. In European Symposium on Programming Languages and
Systems, pages 53–79. Springer, 2015.

S. Visscher. Useful operations on free arrows, 2012. URL
http://stackoverflow.com/questions/12001350.


