
Metropolis-Hastings for Mixtures of Conditional Distributions

Oleg Kiselyov
Tohoku University, Japan

oleg@okmij.org

Abstract
Models with embedded conditioning operations – especially with
conditioning within conditional branches – are a challenge for
Monte-Carlo Markov Chain (MCMC) inference. They are out of
scope of the popular Wingate et al. algorithm or many of its varia-
tions. Computing the MCMC acceptance ratio in this case has been
an open problem. We demonstrate why we need such models. Sec-
ond, we derive the acceptance ratio formula. The corresponding
MH algorithm is implemented in the Hakaru10 system, which thus
can handle mixtures of conditional distributions.

1. Summary
Conditioning has always been the source of challenges for proba-
bilistic programming. Even in case of discrete distributions, where
conditioning is not theoretically problematic, there is an ever-
present danger that a sampling inference procedure degenerates
to the wasteful rejection sampling. With continuous distributions,
it is not often clear what meaning to assign to mixture models
with embedded conditioning – let alone how to sample from the
distribution of these models.

Recently Wingate et al. [5] proposed a general implementation
method for Metropolis-Hastings (MH) MCMC, which is used, with
variations, in many modern probabilistic programming systems.
The method is explicitly designed for probabilistic languages with
loops and conditionals and provides a formula – albeit without any
justification – for computing the MH acceptance ratio. Although
the paper [5] mentions conditioning, it is not included in its de-
scribed algorithm and not reflected in the acceptance ratio formula.
When it comes to conditioning, the implementors are on their own.
In particular, neither the original algorithm [5] nor its various alter-
natives [3] can deal with the models in which conditioning occurs
within conditional branches.

Hakaru10 [2] is a probabilistic programming language for gen-
eral graphical models which supports mixing of any distributions,
including conditional ones. It relies on an incremental MH algo-
rithm: ‘single-site’ proposals followed by only the necessary re-
computations of the trace. Hakaru10 seems to be the first MH
system that permits conditioning operations anywhere within the
model, hence supporting mixing of conditional distributions. The
present paper distills and justifies the algorithm. The implementa-
tion of Hakaru10 along with many examples is publicly available
at http://okmij.org/ftp/kakuritu/Hakaru10/.

2. Why Conditioning with Branching?
Typically, a modeler first draws a model specifying all relevant ran-
dom quantities and their dependencies. Later on, if some quantities
are observed to hold particular values, they are annotated as such
and the corresponding conditional probability distribution is deter-
mined. Probabilistic programming often follows the similar pattern,
e.g., [1]. First, a program expressing a model is written: for exam-

ple, the following trivial model mixing two normal distributions,
with the means of resp. 10 and 11 and the same standard deviation
1.

p1 = do x ← dist bern 0.5
y ← if x then dist norm 10 1 else dist norm 11 1
return (x,y)

The program, written essentially in Hakaru10 syntax, denotes the
joint distribution of x and y. If y is observed at a particular value,
say, 10, we add the conditioning statement to express that fact.

p1c’ = do
(x,y) ← p1
observe (y==10) −− Not a valid Hakaru10 statement!
return x

The program p1c’ then denotes the conditional distribution Pr(x |
y = 10). For continuous distributions, specifying just the observed
value is not enough: we have to know the distribution it comes
from. For example, the conditioning operation in [3] requires the
user to specify not the observation per se but its likelihood function.
Either we have to posit that the observation on y was noisy and we
know the noise distribution function. If we insist on conditioning
on exactly 10, we have to know the probability density for y, which
we can obtain from p1 by marginalizing over x. That is, to properly
specify the conditional distribution on p1 we have to first compute
a marginal over p1, which is the problem of roughly the same
difficulty as the original conditional one.

A more attractive choice is to “push” observe into the condi-
tional branches, where the distribution of y is obvious. We end up
with the following, this time proper Hakaru10 program:

p1c = do x ← dist bern 0.5
if x then condition 10 norm 10 1

else condition 10 norm 11 1
return x

Since the result of the if statement is unused, there must be a
side-effect. As we shall see below, conditioning is indeed a side-
effectful operation. The program p1c is so simple that one can
work out the distibution of x from the basic probability theory:
it is a Bernoulli distribution with the probability of True being
φ(0)/(φ(0) + φ(−1)) where φ(x) is the PDF of the standard nor-
mal distribution. The problem thus is to perform MCMC inference
on the program like p1c with embedded conditioning, in particu-
lar, within conditional branches. Neither Wingate method [5] nor
various alternatives described in [3] can handle such models.

Programs like p1c arise naturally in probabilistic programming
systems that truly support modularity and compositionality. Many
programming languages let us combine previously written com-
putations into more complex ones. Probabilistic programming lan-
guages should likewise let us combine programs (distributions), in-
cluding conditional distributions like p1c’. Therefore, conditioning
expressions can easily end up deeply embedded into a complex,
composed computation. Paper [2, §3] shows a realistic example of
such complex conditioning.

3. Models with Branching
As a warm-up, we first consider unconditional mixtures, of the
following general pattern

p2 = do x ← dist bern a
y ← if x then do {yt ← et; return yt}

else do {yf ← ef; return yf}
return (x,y)

where et and ef are some models (distributions) without condition-
ing on external observations and a is a probability value. Such mod-
els are fully supported by the Wingate et al. algorithm: the paper [5]
gives the formula for the MH acceptance ratio – although without
any derivation or justification. In fact, the correct formula appears
only in the revised version of the paper. In this section we derive
the Wingate et al. formula. Our method turns out general: it can be
extended to include conditioning, as shown in the next section.

In the notation and approach of [4], the acceptance ratio
α(s1, s2) for transitioning from state s1 to state s2 is min(1, r(s2, s1))
where

r(s2, s1) =
π(s2)q(s2,s1)
π(s1)q(s1,s2)

and π(s) is (proportional to the) the density of the target distribu-
tion and q(s1, s2) is the proposal kernel.

In the spirit of Wingate et al. [5] we take a model (program) as a
directed acyclic graph of elementary random primitives (ERP) like
bern in p2. Contra Wingate et al., each ERP is uniquely named.
We write |p| for the number of (active) ERPs in program p (see
below for ‘active’). A sample from p (which we call a trace –
as an execution trace of a program) is a set of samples of all
ERPs from their respective distributions; the distribution of one
ERP may depend on other ERPs: that is, the parameters of an ERP
distribution may depend on sample values of other ERPs. Like in
Wingate et al., we build a Markov chain over the space of traces,
by proposing an update to one ERP sample. (There are exceptions
noted below).

The trace of p2 contains x, y, yt and yf (plus ERPs within et
and ef which we remember later). Let the current trace (state) be
s1: (x=true, y=yt) and we propose a move to s2: (x=false, y=yf).
Clearly,

π(s1) = π(x=true) δ(y=yt) π(et=yt) π(ef=yf)
and similarly for π(s2). (To ease notation we do not write condi-
tional dependencies on x). What is q(s1, s2)? First, we have to se-
lect x from all other ERPs eligible for being updated. The uniform
selection brings in the factor 1/(1+ |et|). Second, we chose to up-
date x from true to false with some probability, say, btf (let bft
be the probability of the reverse update). Finally, the switch from
y=yt to y=yf is deterministic and the corresponding q-factor is 1.

Putting it all together gives the final expression for r(s2, s1)
as (1 − a)/a · bft/btf · (1 + |et|)/(1 + |ef |), which matches
the expression for the acceptance ratio in Wingate et al., once we
account for all cancellations. Now we see where all the factors
come from, which is not that obvious: the likelihoods of submodels
in conditional branches turn out to cancel out (but not when there is
conditioning on external observations, see below). The first version
of Wingate et al. paper did not include the |et|-like factors. They
come in naturally in our derivation.

In the state s1 none of the ERPs in ef can possibly have any
effect on the other ERPs in the program, so there is no sense of
selecting them for update. Therefore, |p| counts only those ERPs
whose update makes sense (may influence the last, in topological
order, ERP in the model – the program result). We call these ERPs
active, and their count may depend on the state – as it does for p2.

If et and ef have the same number of ERPs and if the proposal
to update x is taking a sample from its distribution (that is, bft =
a) then the acceptance ratio becomes 1, which agrees with our
expectations. If et has one ERP but ef has three, then the acceptance

ratio is 0.5, which again makes sense if we consider the distribution
of x values in the resulting MCMC chain: if x is false we have half
as many chances to select it for update compared with it being true,
so we make it twice as likely to stay at true than to switch to false.
In the result, the frequency of x being true in the chain approaches
a, as expected.

The just considered transition updates not only x from true to
false but also y, from yt to yf. The need for such a complex update
becomes clear if the distributions of et and ef have non-overlapping
supports. Thus our proposals are not always ‘single-site’, strictly
speaking.

4. Models with Conditioning and Branching
Now we consider the case when et or ef in p2, or both, contain
conditioning on external observations. To be explicit, let z be a
random variable in the model that is later observed (to say, as 0).

p3 = do x ← dist bern a
(y,z) ← if x then do {(yt , zt) ← et; return (yt , zt)}

else do {(yf , zf) ← ef; return (yf , zf)}
return (x,y,z)

and p3c be p3 conditioned on z=0. Let π(x, y, z) be the target
distribution of p3. The distribution of p3c then is proportional to
π(x, y, z=0).

If we again consider the MH on p3c and the transition from
s1: (x=true, y=yt) to s2: (x=false, y=yf), we now have

π(s1) = π(x=true) δ(y=yt) π(et=yt) π(ef=yf) π(zt=0)
Hence the function r(s2, s1) to compute the acceptance ratio is

r(s2, s1) =
π(x=false)
π(x=true)

π(zf=0)
π(zt=0)

bft

btf

1+|et|
1+|ef |

Compared to the formula in the previous section, there is a new
factor that scores the observation z=0 within the distributions of
et and ef. Now, submodels in conditional branches do influence the
acceptance ratio for the move to switch branches.

Overall, we obtain the following algorithm. In Hakaru10, an
ERP is a tuple of the current sampled value, its log likelihood (LL),
the distribution and its parameters – and a procedure to recompute
the sample or LL should the parameters (which depend on sample
values of other ERPs) change. The overall Hakaru10 algorithm is
not unlike Algorithm 2 in [5] (elided to save space), described in
more detail in [2]. At each step one ERP among active is chosen
and resampled; the update procedures of all transitively dependent
ERPs are run. If an update procedure changes LL of an ERP, it adds
the difference to the global variable LLcum, initialized to 0 at the
beginning. After the updates are finished, LLcum hence contains
log(π(pnew)/π(pold)), which is one of the factors of in computing
the acceptance ratio for the proposed update.

Besides ‘ordinary’ ERPs like bern, Hakaru10 has special ERPs:
for Dirac distribution (the LL is always zero and the update proce-
dure always recomputes the ‘sample’), for a conditioned ERP (the
‘sample’ is fixed at the observed value), and for ERPs for a con-
ditional branch statement if test then et else ef. The update pro-
cedure for the latter is as follows. It is run when the value of the
test has changed as the result of an update. We assume the global
variables Nrem and Nadd initialized to zero, tracking the changes
to the number of active ERPs.

let (activated , passivated) =
if test changed from true to false then (ef , et) else (et , ef)

Nrem +:= | passivated|
for each ERP x in passivated :

if x is a Conditioned ERP, LLcum −:= ll x
Nadd +:= | activated|
for each ERP x in activated :

if x is a Conditioned ERP, LLcum +:= ll x

As a spot check, for p1c we have π(zt=0) is φ(10−10) and the
acceptance ratio for the proposal to randomly switch x from true
to false is φ(−1)/φ(0), which is the expected result.

Acknowledgments
Discussion with Daniel E. Huang and Yufei Cai are gratefully
acknowledged. The work on Hakaru10 was supported by DARPA
grant FA8750-14-2-0007.

References
[1] N. D. Goodman, V. K. Mansinghka, D. Roy, K. Bonawitz, and

J. B. Tenenbaum. Church: A language for generative models. In
D. A. McAllester and P. Myllymäki, editors, Proceedings of the 24th
Conference on Uncertainty in Artificial Intelligence, pages 220–229,
Corvallis, Oregon, 9–12 July 2008. AUAI Press. ISBN 0-9749039-
4-9. URL http://web.mit.edu/droy/www/papers/church_
GooManRoyBonTenUAI2008.pdfhttp://uai2008.cs.helsinki.
fi/UAI_camera_ready/goodman.pdf.

[2] O. Kiselyov. Probabilistic programming language and its incremental
evaluation. In APLAS 2016: Asian Symp. Progr. Lang. Systems, number
10017 in Lecture Notes in Computer Science, Berlin, 21–23 Nov. 2016.
Springer.

[3] A. Ścibior, Z. Ghahramani, and A. D. Gordon. Practical probabilistic
programming with monads. In Proceedings of the 8th ACM SIGPLAN
Symposium on Haskell, pages 165–176, New York, 2015. ACM Press.
ISBN 978-1-4503-3808-0.

[4] L. Tierney. A note on Metropolis-Hastings kernels for general state
spaces. The Annals of Applied Probability, 8(1):1–9, Feb. 1998.

[5] D. Wingate, A. Stuhlmüller, and N. D. Goodman. Lightweight im-
plementations of probabilistic programming languages via transforma-
tional compilation. In AISTATS 2011, number 15, pages 770–778, Cam-
bridge, 2011. MIT Press. Revision 3. February 8, 2014.

